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The heat-conduction equation is solved for a simplified model of a scanning heat-conducting
calorimeter with a working cell in the form of a spherical pyroelectric thermometer. The
optimum material and dimensions for the pyroelectric sensors are determined by numerical
analysis of the solution. ‘

Detailed study of the kinetics of phase transformations in liquid-crystal compounds, ferroelectrics,
and many other materials has become mandatory as a result of their broad application in various branches
of science and technology.

One of the most promising approaches to this problem, in our opinion, is a calorimeter with pro-
grammed variation of working cell temperature — the scanning calorimeter.

The nonlinearity of the electrical output of pyroelectric materials with respect to temperature (or
heat flow) [1] makes them suitable for a calorimeter of this kind.

A hollow pyrothermometer [1], which can form the container for the sample studied, is most prom-
ising for this application. The heat flow through the pyroelectric matérial is conducted through the calori-
meter shell, consisting of a massive metallic block whose temperature is independent of the processes
occurring in the calorimetric cell.

To determine the optimum cell parameters, a mathematical model of the calorimeter is examined,
in approximate form, in order to obtain an expression for variation of average cell temperature with time.
This enables one to optimize the sensor material and dimensions.

Oleinik [2] has developed a calorimeter model which is considered as a uniform core, enclosed in a
shell of known thickness in an unbounded medium. This structure seems entirely suitable for a pyroelectric
calorimeter. However, one of his basic assumptions is the absence of a temperature gradient in the shell.
This is not applicable to a heat-conducting calorimeter.

We assume for simplicity that the shell is spherical, ideal thermal contact exists between the outer
surface of the sphere and the medium (massive metallic biock), and the heat transfer to the inner surface
follows Newton's law. The thermal constants of the sphere are independent of temperature.

Since the sphere's wall thickness is much less than its radius, the heat-conduction equation can be
considered one-dimensional and can be written in Cartesian coordinates, with the center as the origin
[3, 4]
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The initial condition can be written in general form as

T(r, 0) = To(r). (2
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To assign boundary conditions, we assume that the temperatures at the inner and outer surfaces of
the sphere are given by arbitrary functions f;(r) and f,(7), respectively. Then

;,__qz‘_ga{fiLiﬁ—a[fl(T)*T(Rv ) =0 }} (3
T(Ry ©)=[(1) )

In linear scanning, the outer surface temperature varies according to
T(Ry 1) =Ty+ bt {4)

As shown in [5], the inner surface temperature variation is also linear, but with a lag br,. Thus, at
any instant during scanning

fl(T):bT_—bTO 1 ’ (5)
f-z(r) = bt }
and Ty(r) # 0. Here we assume that Ty(r) is linear,
Ty(r) = by (R, —7)8. (6)

Let the cell temperature during scanning attain the value corresponding to the start of the process
studied, which follows the exponential law

f(0)= Ty[l —exp(—RT)l. (n
The temperature variation of the inner surface is then given by
fi(x) = bt — b1, - f (1), (8
and the outer surface temperature remains f,(7) [see Eq. (B)].

R Because of the nonlinearity of the pyrothermometer, the solution of Eq. (1) is written in terms of
dT /dr, where T is the average sensor temperature, as indicated in [6]:

di 4 (1 [ } 9
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The solution of Eq. (1) in the form (9) can be subsﬁtuted directly into the expression [1]
U~ Ayd7‘/d1:, (10)
which describes the electrical output of the pyrothermometer.

Solving Eq. (1) by the method described in [7, 8], using the superposition principle [6], we find aT
/dr for linear scanning: .
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where Bi = aRy /A is the Biot criterion,
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TABLE 1. Roots of Eq. (14) for 6§ /Ry = 0.05

Bi l 7% ’ Mz 1'%} Bg Us Us
0,00 1,6014 4,7229 7,8564 11,000 14,1407 17,2818
0,10 1,6053 4,7242 7,8655 11,0008 14,1410 17,2818
0,20 1,6090 47254 | 7,8657 11,0012 14,1413 17,2821
0,40 1,6148 4,7274 7,8660 11,0022 141420 17,2827
0,60 1,6191 4,7291 7,8662 11,0029 14,1428 17,2832
0,80 1,6248 ©4,7312 7,8664 11,0038 14,1435 17,2838
1,00 1,6320 4,7335° 7,8667 11,0047 14,1443 17,2845
2,00 1,6603 47439 7,8730 11,0092 14,1473 17,2874
4 00 1,7152 4,7647 7,8857 11,0188 . 14,1548 17,2932
6,00 1,7660 4,7653 7,8983 11,0273 14,1619 17,2990
8,00 1,8137 4,8057 7,9109 11,0363 14,1690 17,3047
10,00 1,8582 4,8259 7,9233 11,0454 14,1760 17,3105
15,00 1,9586 4 8751 7,9452 11,0677 14,1935 17,3249
20,00 2,1017 4,9585 "8,0086 11,1076 14,2250 17,3552
49,00 2,3723 5,1599 - 8,1504 11,2143 14,3099 17,4211
99,00 2,6537 5,4544 8,3914 11,4086 14,4699 17,5562
199,00 2,8628 5,7606 8,7083 11,7027 14,7335 17,7908
999,00 3,0801 - 6,1606 9,2420 12,3247 15,4090 17,4953
o 3,1416 6,2832 9,4248 12,5665 15,7080 18,8496

8 Bi-+1 § Bi+1) .
M= —-. ———"‘—{:——COS}M-—(I f—_ ——-——2———) S u;;
Ry K R, W
&% 8 Bi+ 1
Q, = ————— 1—#————.——-’———); ;= — 4.0/,
" ar(2n)! ( R, 2n--1 P i

the pj being the roots of the characteristic equation

i(— 1y (a8 @upii” = 0. (12)

n

Equation (11) is considerably simplified for a constant outer shell temperature (b = 0), and only those
sums which do not contain b remain in the first part.

In practice, the calorimeter must be stable against temperature fluctuations in the external medium.
This is achieved by including in the calorimeter's outer shell a second sensor which is identical to the first
and connected to it by a differential circuit. Solving the same problem for the second cell, a finite expres-
sion for dT /dr is obtained. This expression contains on the right-hand side only those terms resulting
from temperature changes in the measuring sensor, for both scanning and constant outer shell temperature:

dT ___3aR, . _T,Bi exp (— Ex)[Ry--(a/k)! 2 sind (k)"
dz R — R} N

3a Bi S exp(p;t) 8 ’
-+ R,cos 8 (R/a)!/? |— B_R ; k—&—Mpi . o (Rlcospif—};i—smpi——Rz). (13)

The determination of numerical values of dT / dr in Egs. 1) and (13) requires solving the character-
istic equation (12), which after transformation into the form
ctoy = — &  Bi41
S YT (14)
is easily performed on a computer for any finite number of roots.

Using the Nairi-2 computer, we have tabulated the first six roots of Eq. (14) for various R. The
table lists values of the first six roots for By at §/Ry= 0.05.

The following results were obtained from the computer numerical analysis of Eqs. (11) and (13) taking
account of the physical characteristics of the material (resistivity, dielectric constant, pyroelectric con-
stant, and thermal constants).

1. dT /dr increases somewhat with increased thermal-diffusion rate. A material with as large a
value of a as possible should be used (other parameters being optimized).
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2. dT /dr increases significantly with decreased 6. However, the pyroelectric effect of the sphere
material decreases, because of the increase in electrical conductivity and decrease in dielectric
constant. The optimum value of § is therefore 0.5 mm. For this value, a change in the physical
characteristics of the sensor material does not affect its pyroelectric activity.

3. The calculated increase in dT /dr with increasing Ry does not give a true picture of the behavior
of dT /dr, because at constant volume a change in spherical radius results in a change in the Biot
criterion, and a simultaneous increase in R, and the sample volume can cause a sigpificant tem~
perature gradient in the sample. The optimum spherical radius is 10 mm for a sample volume not
less than 4 cm?,

We have therefore designed a sphere with Ry = 10 mam and 6 = 0.5 mm. The material is lead titanate
—zirconate with various additives.

NOTATION
Ry, Ry are the inner and outer spherical radii, respectively, mm;
r is the coordinate;
T is the time, sec;
T, is the temperature at zero time, °C;
a is the sphere thermal-diffusion coefficient, m?/ sec;
A is the sphere thermal conductivity, W/ m - deg;
o is the heat-transfer coefficient of inner sphere surface, W/m?- deg;
To is the calorimeter time constant, sec;
b is the scanning rate, deg/ sec;
v is the spherical shell volume, m?%;
TM is the maximum temperature increase at v — =;

k is the thermal process rate constant;

v . is the pyroelectric constant, C/m?-deg;
A is the pyrosensor electrode area, m?;

u

S

is the pyrovoltage, V;
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